

L4_C Science Requirements & Traceability

SMAP science objectives addressed:

- Quantify net ecosystem exchange (NEE) of CO₂ in boreal landscapes;
- Improve understanding of processes linking terrestrial water, carbon & energy cycles;

Product requirements:

- Determine NEE daily, seasonal & annual variability & heterogeneity within & among major biome types;
- Link NEE with component C fluxes (GPP, R) & primary soil moisture & thermal constraints to productivity & ecosystem respiration;

Product success criteria:

- Emphasis on northern (≥45°N) land areas;
- NEE accuracy (RMSE) commensurate with tower based C-fluxes for major biome types.

L4_C Error Budget (RMSE)

Type of Error	Error Source	Source Units	Range	Value	NEE Contribution (g m-2 y-1)
Input Data	Temperature	deg C	1.5-4	3.5	6.2
	Moisture	vol. m3/m3	0.04-0.10	0.05	5.7
	GPP	g m-2 d-1	1.0-2.0	1.5	14.5
Model	Optimal Decomp. Rates/Response	d-1	0.001-0.01	0.005	2.9
Parameterizaton	Pool Representation/Steady State	g m-2	100-1000	1000	9.6
	Autotrophic Respiration fraction	dim	0.05-0.15	0.1	2.7
Heterogeniety	Land Cover Heterogeneity	g m-2 yr-1	0-60	16	22.6
Total NEE Error	Inputs Only	g m-2 yr-1			16.7
	Model Only	g m-2 yr-1			10.4
	Inputs + Model	g m-2 yr-1			19.7
	Inputs + Model + Het.	g m-2 yr-1			30.0

L4_C Estimated NEE Error (RMSE)

SMAP L4_C Product Summary

Net Ecosystem CO₂ Exchange (NEE)

Motivation/Objectives: Quantify NEE variability for major biomes; Link NEE to primary moisture & thermal constraints to productivity & ecosystem respiration

Approach: Apply LUE & soil Decomp. Algs. driven by SMAP & other ancillary inputs

Inputs: FT (L3_SM_A); SM & T (L4_SM); Rs, VPD, Tmn (GMAO); FPAR (MODIS, VIIRS)

Outputs: NEE (validated); GPP, Rh, SOC,

EC & QC metrics (research)

Domain: Global vegetated areas

Resolution: 9 km (1 km processing)

Temporal fidelity: Daily

Accuracy: Emphasis on boreal land areas; NEE RMSE ≤ 1.6 g C m⁻² d⁻¹ relative to tower

observations

L4_C Product Example

L4_C GPP Calculation

L4_C Carbon Flux Algorithm

Pre-launch Cal/Val Activities

Emphasis: model performance evaluation, calibration, initialization;

- Site, region & global L4_C simulations using tower (FLUXNET), satellite (MODIS) & reanalysis (MERRA) drivers;
 - ✓ Quantify expected global performance & uncertainty (e.g. mean & variability, QC range thresholds);
- Model calibration (BPLUT) & consistency checks using tower data & synergistic global C products (MOD17, MTE, SOC inventories);
- Model initialization & assembly of ancillary data for post-launch operations (SOC pools; FPAR climatology; QC/QA base maps).

Estimated L4_C NEE Annual Error relative to Tower Observations

Source: Jones et al. 2013 In prep.

Ancillary Data Resources for Validation

- ✓ Core tower sites providing daily C-fluxes & supporting data
 - ~17 sites emphasizing northern biomes
 - Meet Cal/Val site requirements
 - Formal agreements for near real-time data access
- ✓ Secondary sites meeting validation criteria from global FLUXNET archives
 - ~80 (from >400) sites; global representation
 - Multi-year records, consistent methods, well characterized uncertainty, but <u>not</u> real-time
- √ Synergistic global land products
 - L4_C simulator outputs
 - MODIS GPP
 - Soil Carbon (SOC) inventories [static]
 - Upscaled, Obs. based C products (MTE)

L4_C Validation Sites in Climate Space

Pre-launch Cal/Val Activities

L4 C Science Application Demonstration: Quantify terrestrial carbon (CO₂) sourcesink activity

- L4_C outputs as land surface priors for top-down Atm. carbon model inversions (e.g. CarbonTracker);
- Validation enhancement using synergistic C observations (CO₂ flask network, OCO-2);
- Links C source/sink activity to NEE & underlying SM & thermal constraints (SMAP Decadal Survey objective);

Pre-launch Cal/Val Activities

L4_C options refinement & downselect:

- Two L4_C options represented:
 - Dynamic FPAR estimation from lower order VI inputs;
 - ✓ Fire disturbance recovery;
- <u>Downselect criteria</u>: Balance accuracy & science utility against operational efficiency & reliability
 - Accuracy & reliability for global implementation;
 - ✓ MODIS operational status & VIIRS land product (VVI) development;

TCF response to fire (GFED) & drought variability

Source: Yi et al. 2013. JGR

L4_C Cal/Val Rehearsals

Motivation: Test mission software & Cal/Val partner capabilities to provide near real-time tower data in an appropriate & consistent format;

Phase 1 (Jun-Aug 2013):

- Involve a subset of core tower validation sites;
- Compare preparatory L4_C Alg. simulations & daily tower observations co-located in space, but not in time;
- Metrics: Data latency & consistency checks, RMSE, MRE, Correlation analysis;

Phase 2 (Apr-May 2014):

- Involve all (17) core tower sites;
- Use mature L4_C Alg. software for comparisons:
 - Comparisons co-located in space but not in time;
 - Tower footprint vs 1-9 km Res. outputs;
 - Model sensitivity runs to distinguish relative error sources.

Post-launch Cal/Val Activities

Primary (post-IOC period):

- L4_C recalibration, reinitialization using SMAP operational data;
- NEE daily product comparisons against core tower site observations;
- Operational checks against QC range thresholds;

Secondary:

- Verify other L4_C parameters (GPP, R, SOC, EC, QC);
- L4_C global sensitivity & performance analysis;
- Consistency checks against other global C products;

Actions taken (if needed) to meet performance criteria:

 Subject to science (ADT) team & SDS change control board.

NEE Product Quality (QC)

NEE RMSE

Potential Carbon Collaborations

- Core tower validation site partnerships;
- Coordinated carbon product comparisons & benchmarking activities;
- Field campaigns (e.g. ¹ABoVE)
- Algorithm refinement & sensitivity studies:
 - ✓ Wetlands & permafrost landscapes;
 - ✓ Disturbance recovery effects;
 - ✓ Agricultural landscapes;
 - ✓ Carbon & climate feedbacks:
- Science application demonstrations & development
 - ✓ National carbon assessments

¹Source: http://cce.nasa.gov/terrestrial_ecology/pdfs/ABoVE%20Final%20Report.pdf